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Nuclear Data Dimension Reduction

Devin Francom, Scott Vander Wiel, Brian Weaver
CCS-6, Statistical Sciences
Los Alamos National Laboratory

1 Introduction

Our nuclear data consist of 30 energy group cross sections as well as nubar and PFNS.
They are sampled from a Gaussian distribution with correlations shown in Figure 1. A
few of these samples are shown in Figure 2. The purpose of this section is to describe
how we can reduce the dimension of the nuclear data for purposes of uncertainty quan-
tification. Sections 2 and 3 describe why dimension reduction is useful, as well as our
approach to dimension reduction.

When using these nuclear data as inputs to the PARTISN code, some of the resulting
kg values are unrealistic. For instance, when PARTISN is simulating the Jezebel critical
assembly, some of the nuclear data yield k¢ far from one. We would like to weight the
nuclear data combinations that yield more realistic output higher, while downweighting
those that result in unrealistic output. Our approach to this is described in Section 4.
Throughout the other sections, we will merely refer to a prior distribution of nuclear data,
which is not constrained by the Jezebel experiment, and a posterior distribution of nuclear
data, which is conditioned on satisfactory performance for the Jezebel experiment. For
instance, the correlation matrix for the reweighted (posterior) nuclear data is shown in
Figure 3, along with the difference from the prior correlation matrix.

Finally, we will describe dimension reduction results in Section 5.

2 Dimension Reduction in Regression Settings

In regression settings, high dimensional inputs can be debilitating. Consider the case
where we have a p-dimensional set of inputs, x = (xq,...,xp) that produce output
y = f(x). In order to explore the input-output relationship (i.e., to explore f), we might
evaluate y for a collection (say N) of different combinations of x. The difficulty with ex-
ploring this relationship comes from the curse of dimensionality (Donoho et al. (2000)),
which is that as p increases linearly, N must increase exponentially in order to explore
the larger space. Dimension reduction is typically used in an effort to combat the curse of
dimensionality.

There are numerous flavors of dimensions reduction, all with the same goal of repre-
senting high-dimensional data in the most informative lower dimensional space. More
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Figure 1: Visualization of the nuclear data correlation matrix.
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Figure 2: 30 samples of the nuclear data (log;, scale).
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Figure 3: Top: Correlation matrix of the nuclear data after reweighting according to the Jezebel experiment.

Bottom: difference (posterior-prior) between the correlation matrices.




Nuclear Data Dimension Reduction

specifically, given the x-y relationship above, we are interested in finding a reduced di-
mension set of inputs z = (z1,...,z;) whered < p and y ~ g(z). In other words, we
want to find the reduced dimension input space that still explains all (or the majority) of
the variation in y, though through a different functional relationship. If we can discover
such a reduced dimensional input, then the function g : R? — R will be easier to explore
than f : R? — R.

A natural approach to determining z is to consider linear subspaces, which have the
formz = (b}x,...,b/,x) = B'x. The vectors by, ..., by, which are typically orthogonal, are
often called the active directions. The space spanned by the active directions is of primary
interest, so the scale of each b vector is uninteresting. There are numerous approaches
to finding the active directions. Below we explore a few of these approaches, namely
principal components, sliced inverse regression, and active subspaces.

2.1 Principal Component Approach

The principal component approach to this problem is to set by, ..., b, equal to the domi-
nant eigenvectors of the matrix Cov(x), where Cov(-) denotes covariance. Then by can be
interpreted as the direction corresponding to largest variation in x, b, as the direction with
largest variation orthogonal to b1, and so on. Since the eigenvalues reveal the amount of
variance of x explained by the different eigenvectors, d can be chosen according to some
cutoff of percent of variance explained.

Because the principal components are the dominant modes of variation in x without
regard to y, the principal component approach is not specific to regression settings. While
general and widely used for dimension reduction in the regression setting, other ap-
proaches can sometimes be more appropriate because of their exploration of variation
in both x and v.

2.2 Sliced Inverse Regression (SIR)

Sliced inverse regression methods, introduced in Li (1991), seek to find by, ..., b; such
that p(y|x) = p(y/bix,...,b)x). That is, SIR seeks the directions of x that explain the
dominant variation in y.

To find by, ..., by, consider reversing the conditioning, to think about p(x|y). More
specifically, consider using E(x|y), called the inverse regression curve, as a summary of
the relationship between x and y. To explain the intuition behind the inverse regression
curve, consider an example when p = 3. For y = yp, the multivariate distribution of
(x1, x2, x3) may be constrained in x; and x; but not in x3. That is to say that yo can only be
obtained when x; and x; are close to certain values, regardless of the value of x3. Under
a few conditions, this relationship is captured by E(x|y). Let x = Z~/2(x — u), where
p = E(x) and & = Cov(x). Then the dominant eigenvectors of Cov(E(X|y)), which we
call 74, ..., 1, are the dominant modes of variation of the inverse regression curve. Thus,
we could use 2_1/2111,. .., Z_l/zqd asbq,...,b,.

In practice, the inverse regression curve is approximated using a slicing technique, and
hence the complete method is called “sliced inverse regression.” The slicing is performed
by breaking the range of y into distinct bins and, for each bin, considering the sample
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mean of the X vectors that result in a y in that bin. Specifically, for bin /1, we calculate the
mean of the corresponding samples, X, and the number of samples that fall in that bin,
ny,. Then we estimate Cov(E(X|y)) ~ % 2,11'121 nyX,X. Figure 4 demonstrates what a few
x;, vectors look like for the nuclear data. Different colors indicate different bins (different
values of h). This indicates, for instance, that the high energies of the fission cross section
tend to explain differences in y.

2.3 Active Subspaces

The active subspace approach to this problem (Russi (2010); Constantine et al. (2014))
/
uses the gradient of f, denoted V,f(x) = <ﬁ ey %) to understand the relationship

daxy’”
between x and y. To find the dominant modes of variation in the gradient, we use the
eigen decomposition of E[(V.f)(Vxf)'], which is the (typically approximated) uncen-
tered covariance of the gradient vector. In cases where the gradient can be sampled, this is
approximated with E[(Vxf)(Vxf)'] & & LN, (Vifi) (Vi)' In cases where the gradient
cannot be sampled explicitly, it can be approximated via further sampling (Constantine
et al. (2015)).
When the dimension reduction results in d = 1 (i.e., z = b’x), and when the relation-
ship between z and v is linear (i.e., g(z) = ag + «1z), then the problem simplifies to linear
regression where we can find b by least squares.

3 Gaussian Regularized SIR

In cases where we think that an active direction b should be smooth with respect to an in-
dexing variable, regularization becomes necessary. Bernard-Michel et al. (2009) introduce
a method for regularizing SIR particularly for the case when X is not invertible. The idea
is to regularize by effectively assuming a Gaussian prior for b.

In Section 2.2, we described how the SIR subspace of interest is obtained by taking the
first d transformed eigenvectors of Cov(E(X|y)). The same subspace is obtained by taking
the first d eigenvectors of £ 1Cov(E(x|y)). Let T := Cov(E(x|y)). Assuming the Gaussian
prior for each vector b; is of the form b; ~ N (0, cQ), where c is a constant, then, under the
inverse regression model introduced in Cook (2007), the posterior maximum for b; is the
ith largest eigenvector of (QX + I)~'QI. Bernard-Michel et al. (2009) demonstrate that
three previous approaches to SIR fit into this formulation: (1) traditional SIR is obtained
using Qp = (TZ)~1; (2) a ridge regularized version obtained using Q; = 77 'I; and (3)
SIR on principal components of x is obtained using Q; = 7! 2?21 uju;-/ dj, where u is
an eigenvector, J is an eigenvalue, and d < g < p. In all of these, T > 0 is an unknown
parameter. Bernard-Michel et al. (2009) also introduce three new SIR regularizations: (1)
Tikhonov regularization is introduced with Q3 = 7~1E; (2) ridge regularization on the
PCA projected predictors is introduced with Q4 = 71 2?21 uju;. ; and (3) Tikhonov regu-

larization on the PCA projected predictors is introduced with Qs = 7! 2?21 5juju;.
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Figure 4: Each line is the average of cross section samples that produce y values that fall into a particular
bin. Hence, the darkest green line corresponds to the smallest i values. The top group of plots show the
nuclear data with prior weights, whereas the bottom shows the reweighted version with the same axes,
demonstrating the decrease in variation.
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3.1 Smoothness

Consider the case where b is expected to be smooth with respect to index t. Thus the it

element of b is b; = b(t;). To impose smoothness we can regularize the second derivative

of b(t). That is, we can penalize b" (t) := dzdbtgt)

b"(t) ~ N(0,x~1). In the discretized case, we can approximate b (t) with Kb where K is
the (T — 2) x T second differencing matrix where T is the length of b. Hence, the first row
of Kis (—1,2,-1,0,...,0), the second row of K is (0,—1,2,—1,0,...,0) and the last row
of Kis (0,...,0,—1,2,—1). Then Kb ~ N(0,x 'I), which implies b ~ N(0, (xK'K) "),
where A™ is the generalized inverse of A. However, we can also combine the smoothness
prior with the other priors discussed above, as they represent two independent sources
of prior information. We propose three new SIR regularizations that include penalties
for lack of smoothness, parameterized in terms of precision rather than covariance: (1)
Smooth SIR with 06_1 = 7 + xK'K; (2) smooth ridge with Q' = 7I + xK'K; and (3)
smooth Tikhonov with Qg = 7271 4+ xK'K.

We want to allow for the possibility that I is singular and therefore Q !, above, is
not well-defined. A singular X can arise because of the functional form of x. Using the
Woodbury matrix identity on g, for example,

being different from zero, with the prior

Qg = (rz—l + KK/K>_1

(e '5) - () [ ek (e ) K] K ()]
= 72 [1 - #K (71 + KEK') 'Kz

This latter form of Q) is computable even if X is not invertible. Further, singular X implies
singular Q) but the GRSIR method can proceed because (QX + 1) 1OT remains well-
defined, as does its eigen-decomposition.

In the case where b is a collection of r functions indexed by the same variable (i.e.,
b = [b1(t1),...,b1(t7), ba(t1), ..., ba(tT), ..., be(tT), .., by(t7)]), we apply the smooth-
ness prior to each function independently. Hence, we make the matrix K, = I, ® K, where
® is the Kronecker product, I, is the r x r identity matrix, and K is the same (T —2) x T
matrix defined above. We then replace K'K in ()4, Q7 and Qg with K/ K, = I, ® (K'K).

3.2 Parameter Choices

For a given choice of (), the parameter T needs to be estimated in all cases as does the
parameter x in the smoothing cases. We do this by cross-validation. However, cross-
validation is not straight forward, since the relationship, g(-), between the active vari-
ables, z, and the response, y, is unknown. With a large number of function evaluations
relative to the dimension of z, estimating g(-) with nearest neighbors is attractive for sim-
plicity. Using a more complex model would likely require much more training time for
each parameter setting in the cross validation. Further, a more complex model would
likely have parameters of its own to tune, possibly confounding the cross validation.
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We use 10-fold cross validation to choose T and «x . For reasons discussed in the In-
troduction and further explained in Section 4.1, we have a weighted sample of x vectors,
X1, ...,Xp with corresponding weights wy, . .., wys. We break the M samples into 10 folds
requiring each to have similar weight (similar effective sample size, a quantity discussed
below). In both the training and test set, we resample the x vectors according to their
weights, and calculate () using the training x vectors. Then, for each of the test set x
vectors, we find the 10 nearest neighbors in the reduced dimension space. We predict
the held out y values by taking a weighted average of the 10 nearest neighbor y values,
weighted according to distance. We should note that in this case, the reduced dimen-
sion space z is produced using the eigenvectors of () weighted by their corresponding
eigenvalues, in order to make distance between z vectors more meaningful.

For each fold, we test a suite of T and x values in a stepwise fashion. We select a range
of values on the log,, scale where all combinations of T and « are tested. Then, if there is
a clear minimum holdout mean squared error (MSE) that is not an edge case, we select it
as the minimum. If the minimum is on an edge, we explore further in that direction until
the minimum is not an edge case.

After each fold is optimized, the optimal T and x values can be averaged across folds.

3.3 Interpretation

The b vector is interpretable when thought of as weights in the linear combination of
x that results in an informative new variable (z), implying that large (absolute value)
weights indicate more important parts of x (assuming x is standardized). This can be
used as a sensitivity gage, where larger b values indicate a greater contribution of the
corresponding x dimensions. Further, if b; > 0 and b; < 0, we can expect that increasing
b; while decreasing b; (or vice versa) results in the same z value and hence the same y
value. Smooth b vectors make sense when x is smooth, as we expect features of the x
curves to influence the output rather than particular variables like x;. In other words, if x
is smooth we expect x; and x;;1 to have similar effect on y. Without imposing smoothness
on b, the result is a great deal less interpretable as it may indicate x; is important while
xi4+1 is not, or may have positive b; and negative b;;; in order to dampen the effect of
highly correlated x; and x; ;. A ragged b may be equally good at reducing the dimension
of x, but is difficult to understand.

4 Incorporating Experimental Knowledge

A simple, but effective way to incorporate experimental knowledge into our simulator
dimension reduction is to use importance sampling.

41 Importance Sampling

If we have a vector x ~ p(x), where p(x) is difficult to sample, we can use importance
sampling (Geweke (1989)) to weight independent samples from a similar distribution,
g(x), so that they are a weighted sample from p(x). For instance, to find the expectation
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of a function f(x),

which can be approximated with

FOp(0 L 1 foplx) _ 1
Eq( q(X) )r\JZ\/Il_Z1 [/](xi) _sz( l)wl

where x1, ..., x) are independent samples from g(x) and w; = p(x;)/q(x;) is called the
importance weight. Now, when we are seeking a posterior expectation, we have that
p(x) = m(x|D) := L(D|x)m(x)/c where D denotes data we are conditioning upon, L(-)
denotes the likelihood, 7t(x) is the prior, and c is the normalizing constant. If we use
g(x) = 1t(x), the prior, then the weights are

_ (x| D) _ L(D|x;)m(x;) _ L(D|x;) « L(D|x;).

" n(xi) — em(x) ¢

We use these weights, wy, ..., wy, to reweight our prior samples conditional on criticality
experiments. For instance, simulations of Jezebel ought to produce k¢ near one with,
perhaps, the probability of getting k¢ of 1 £ 0.0023 constant, and anything more extreme
being less probable until reaching probability zero beyond 1 &+ 0.009. This trapezoid-
shaped distribution, called i(-) (shown in Figure 5), is then the likelihood. Hence, w; o
L(D|x;) = h(f(x;)), where f is the code that results in y = f(x). We use the Jezebel
simulations to obtain weights that we use to resample the simulations before performing
dimension reduction. That way, the dimension reduction applies to the most pertinent

part of the inputs.
Importance sampling falls apart when there are many small weights and a few large
weights. The “effective sample size,” estimated with ESS := (XM, w?)~!, is a gage of

how many independent samples the weights effectively produce. In our case, weighting
according to the Jezebel experiment trapezoid distribution above results in ESS = 4453,
which is a sufficiently large sample to implement our dimension reduction techniques.

5 Comparison of Dimension Reduction Methods

For each of the nine GRSIR methods (€)y through Qg), Figure 6 shows the distribution of
holdout data RMSEs for the 10 cross-validation folds. This also shows the distribution of
RMSE:s for the active subspace approximation as well as for varying numbers of princi-
pal components. This plot demonstrates that the PCA approach is not well suited to this
dataset. The dominant modes of variation in ¥ do not correspond to variation in the first

9
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Figure 5: Left: the trapezoidal likelihood function % (-). Right: a comparison of the prior f(x) values, where
x is sampled from the Gaussian distribution described in Figures 1 and 2, and the posterior f(x) values,
which is the prior reweighted by the likelihood.

few principal components. Hence, all the GRSIR methods result in RMSEs more than an
order of magnitude smaller than the PCA approach. Further, all the GRSIR methods only
use one active dimension, where we show up to the first 10 principal components being
used. A dimension reduction that results in d = 1 is much more efficient that one that
results in d = 10. This plot also demonstrates that the active subspace approximation is
well suited to this data, though it is not very different from the GRSIR approaches. Par-
ticularly, the GRSIR approaches that induce smoothing result in a simpler and smoother
b vector, which we are more inclined to believe has physical meaning than more ragged
b vectors. Hence, we use the smooth Tikhonov b vector for dimension reduction.

Figure 7 shows what the difference would be when choosing between using the first
principal component for b, the smooth Tikhonov b, and the active subspace approxima-
tion for b. The right two plots show that the smooth Tikhonov and active subspace ap-
proximation methods result in an almost noiseless relationship between the correspond-
ing z and y (i.e., the function ¢ has little noise). The z-y relationship resulting from the first
principal component has much more noise. This kind of noise is induced by the method
of dimension reduction rather than the underlying high dimensionality of the data, and
is thus avoidable. Hence, the first principal component provides a poor summary of the
active dimensions.

Figure 8 shows the smooth Tikhonov b vector, which indicates the relative contribu-
tion of the corresponding cross sections, nubar, and PFNS. This indicates that the elastic,
inelastic, and fission cross sections play dominant roles while the n2n, n3n, and capture
cross section play little role. PENS and nubar are moderately important. The low energies
are unimportant for explaining the variation of the simulated k¢ values (conditioned on
the Jezebel experiment). However, the very highest energies are also mostly unimportant.

10
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Figure 6: RMSEs for each dimension reduction method over 10 cross-validation folds, where the g function
(y = g(z)) is estimated with nearest neighbors.
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using different dimension reduction methods.
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